Lead-start isothermal polymerase amplification controlled by DNAzymatic switches

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 23
  • Download : 0
As DNA polymerases are even active at ambient temperature, there is inevitable non-specific amplification; to avoid the undesired amplification of analytes, a heat activation-based polymerase chain reaction (PCR), called hot-start PCR, is widely used to be highly precise and quantitative in detection. Unlike thermocycling amplification, isothermal amplification, compatible for point-of-care (PoC) tests, cannot be benefited by the heat-activation technique, making the method qualitative rather than quantitative. In this work, we newly developed a lead ion (Pb2+) activation technique, called lead-start isothermal amplification, allowing on-demand activation or deactivation of DNA polymerases at room temperature. We systematically correlated the DNA polymerase inhibition by the TQ30 aptamer with Pb2+-responsive strand cleavage by the GR5 DNAzyme, and relying on the type of interconnectors, Pb2+ successfully served as an initiator or a terminator of isothermal DNA amplification. Our lead-start isothermal amplification was exceptionally Pb2+-specific, dramatically increasing the enzymatic activity of DNA polymerase (>25 times) only by Pb2+ introduction. Despite one-by-one sample preparation, a number of reactions can begin and end at the same time, sharing the identical amplification conditions, and thereby allowing their quantitative analysis and comparison. Using a portable UV lamp and a smartphone camera, we also succeeded in quantifying the amounts of clinically important and human papillomavirus type 16 genes in human serum and SARS-CoV-2's nucleocapsid genes in human serum and saliva, and the limit of detection was as low as 0.1 nM, highly applicable for actual PoC tests in the field with no purification process.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2022-06
Language
English
Article Type
Article
Citation

NANOSCALE, v.14, no.21, pp.7828 - 7836

ISSN
2040-3364
DOI
10.1039/d1nr07894a
URI
http://hdl.handle.net/10203/318925
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0