Transplantation of betacellulin-transduced islets improves glucose intolerance in diabetic mice

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 17
  • Download : 0
Type 1 diabetes is an autoimmune disease caused by permanent destruction of insulin-producing pancreatic beta cells and requires lifelong exogenous insulin therapy. Recently, islet transplantation has been developed, and although there have been significant advances, this approach is not widely used clinically due to the poor survival rate of the engrafted islets. We hypothesized that improving survival of engrafted islets through ex vivo genetic engineering could be a novel strategy for successful islet transplantation. We transduced islets with adenoviruses expressing betacellulin, an epidermal growth factor receptor ligand, which promotes beta-cell growth and differentiation, and transplanted these islets under the renal capsule of streptozotocin-induced diabetic mice. Transplantation with betacellulin-transduced islets resulted in prolonged normoglycemia and improved glucose tolerance compared with those of control virus-transduced islets. In addition, increased microvascular density was evident in the implanted islets, concomitant with increased endothelial von Willebrand factor immunoreactivity. Finally, cultured islets transduced with betacellulin displayed increased proliferation, reduced apoptosis and enhanced glucose-stimulated insulin secretion in the presence of cytokines. These experiments suggest that transplantation with betacellulin-transduced islets extends islet survival and preserves functional islet mass, leading to a therapeutic benefit in type 1 diabetes.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2014-05
Language
English
Article Type
Article
Citation

EXPERIMENTAL AND MOLECULAR MEDICINE, v.46

ISSN
1226-3613
DOI
10.1038/emm.2014.24
URI
http://hdl.handle.net/10203/318854
Appears in Collection
MSE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0