Enhanced performance and durability of composite membranes containing anatase titanium oxide for fuel cells operating under low relative humidity

Cited 30 time in webofscience Cited 0 time in scopus
  • Hit : 43
  • Download : 0
In this work, sulfonated diblock copolymers (SDBCs) were prepared by polycondensation of sulfonated poly(ether-ether-ketone) (SPEEK) and hydrophobic oligomer, which were combined with sintered anatase titanium oxide (S-An-TiO2) to create a hybrid membrane for apply in proton exchange membrane fuel cells (PEMFCs) operating with low relative humidity (RH). Then, a series of composite membranes (SDBC/S-An-TiO2) were prepared by varying the wt% of S-An-TiO2 blended with SDBC. The results showed that appropriate quantity (ie, 15 wt%) of S-An-TiO2 can significantly improve the proton conductivity and physiochemical properties of prepared composite membrane, as well as the PEMFC performance and durability under 20% RH. The 1.5 wt% of SDBC/S-An-TiO2 offers high current output, power output, and durability values at 60 degrees C under 20% RH, which are 0.207 A cm(-2), 0.074 W cm(-2) and over 90 hours, respectively. These results can be attributed to the good interfacial compatibility between S-An-TiO2 and SDBC.
Publisher
WILEY
Issue Date
2022-03
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, v.46, no.4, pp.4835 - 4851

ISSN
0363-907X
DOI
10.1002/er.7477
URI
http://hdl.handle.net/10203/318643
Appears in Collection
MSE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 30 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0