In situ atomic force microscopy studies on lithium (de)intercalation-induced morphology changes in LixCoO2 micro-machined thin film electrodes

Cited 38 time in webofscience Cited 0 time in scopus
  • Hit : 46
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Jonghyunko
dc.contributor.authorKalnaus, Sergiyko
dc.contributor.authorHan, Sangwooko
dc.contributor.authorLee, Yoon Kooko
dc.contributor.authorLess, Gregory B.ko
dc.contributor.authorDudney, Nancy J.ko
dc.contributor.authorDaniel, Clausko
dc.contributor.authorSastry, Ann Marieko
dc.date.accessioned2024-03-06T08:00:34Z-
dc.date.available2024-03-06T08:00:34Z-
dc.date.created2024-03-06-
dc.date.issued2013-01-
dc.identifier.citationJOURNAL OF POWER SOURCES, v.222, pp.417 - 425-
dc.identifier.issn0378-7753-
dc.identifier.urihttp://hdl.handle.net/10203/318442-
dc.description.abstractStructural instability due to intercalation-induced stresses in electrode materials is one of the key degradation mechanisms of Li-ion batteries. Fragmentation of material degrades structural integrity and electrical resistance, and also accelerates harmful side reactions. In situ experiments are the appropriate approach for investigating the actual time-dependent nature of the behavior changes of an electrode material while it is charged and discharged. In the current work, a unique in situ electrochemical atomic force microscopy (ECAFM) measurement is made on samples of cylindrical shape, which are micro-machined by focused ion beam (FIB) microscopy. This pre-defined geometry allows the exclusion of secondary, non-active materials from the electrochemically active material as well as the removal of any vagueness owing from the irregular geometry of particles. The experimental results are also used to validate a proposed coupled electrochemical and mechanical model for determining the stress-strain state of active electrode material during electrochemical cycling. The results produced using this model correlate strongly with the experimental data. The combined results reveal the key effects of the geometry, kinetics, and mechanics of electrode materials on the stress-strain state, which acts as a barometer of the structural stability of a material. (c) 2012 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleIn situ atomic force microscopy studies on lithium (de)intercalation-induced morphology changes in LixCoO2 micro-machined thin film electrodes-
dc.typeArticle-
dc.identifier.wosid000311129900059-
dc.identifier.scopusid2-s2.0-84866559151-
dc.type.rimsART-
dc.citation.volume222-
dc.citation.beginningpage417-
dc.citation.endingpage425-
dc.citation.publicationnameJOURNAL OF POWER SOURCES-
dc.identifier.doi10.1016/j.jpowsour.2012.09.017-
dc.contributor.localauthorLee, Yoon Koo-
dc.contributor.nonIdAuthorPark, Jonghyun-
dc.contributor.nonIdAuthorKalnaus, Sergiy-
dc.contributor.nonIdAuthorHan, Sangwoo-
dc.contributor.nonIdAuthorLess, Gregory B.-
dc.contributor.nonIdAuthorDudney, Nancy J.-
dc.contributor.nonIdAuthorDaniel, Claus-
dc.contributor.nonIdAuthorSastry, Ann Marie-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAFM-
dc.subject.keywordAuthorElectrochemical-mechanical-
dc.subject.keywordAuthorIntercalation-
dc.subject.keywordAuthorMicro-machined-
dc.subject.keywordAuthorThin film electrode-
dc.subject.keywordAuthorVolume change-
dc.subject.keywordPlusINTERCALATION-INDUCED STRESS-
dc.subject.keywordPlusX-RAY-DIFFRACTION-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusELECTROCHEMICAL SHOCK-
dc.subject.keywordPlusNUMERICAL-SIMULATION-
dc.subject.keywordPlusSTRUCTURE REFINEMENT-
dc.subject.keywordPlusLICOO2-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusGENERATION-
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 38 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0