Plasmonic metasurfaces of cellulose nanocrystal matrices with quadrants of aligned gold nanorods for photothermal anti-icing

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 56
  • Download : 0
Cellulose nanocrystals (CNCs) are intriguing as a matrix for plasmonic metasurfaces made of gold nanorods (GNRs) because of their distinctive properties, including renewability, biodegradability, non-toxicity, and low cost. Nevertheless, it is very difficult to precisely regulate the positioning and orientation of CNCs on the substrate in a consistent pattern. In this study, CNCs and GNRs, which exhibit tunable optical and anti-icing capabilities, are employed to manufacture a uniform plasmonic metasurface using a drop-casting technique. Two physical phenomena-(i) spontaneous and rapid self-dewetting and (ii) evaporation-induced self-assembly-are used to accomplish this. Additionally, we improve the CNC-GNR ink composition and determine the crucial coating parameters necessary to balance the two physical mechanisms in order to produce thin films without coffee rings. The final homogeneous CNC-GNR film has consistent annular ring patterns with plasmonic quadrant hues that are properly aligned, which enhances plasmonic photothermal effects. The CNC-GNR multi-array platform offers above-zero temperatures on a substrate that is subcooled below the freezing point. The current study presents a physicochemical approach for functional nanomaterial-based CNC control.,Cellulose nanocrystals are very attractive as a matrix material for plasmonic nanoparticles, but controlling particle orientation for patterning is challenging. Here, the authors prepare annular ring patterns with quadrants of aligned gold nanorods for photothermal applications.,
Publisher
NATURE PORTFOLIO
Issue Date
2023-12
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.14, no.1

ISSN
2041-1723
DOI
10.1038/s41467-023-43511-9
URI
http://hdl.handle.net/10203/318286
Appears in Collection
ME-Journal Papers(저널논문)CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0