Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 68
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHermosilla-Palacios, M. Alejandrako
dc.contributor.authorMartinez, Marissako
dc.contributor.authorDoud, Evan A.ko
dc.contributor.authorHertel, Tobiasko
dc.contributor.authorSpokoyny, Alexander M.ko
dc.contributor.authorCambre, Sofieko
dc.contributor.authorWenseleers, Wimko
dc.contributor.authorKim, Yong-Hyunko
dc.contributor.authorFerguson, Andrew J.ko
dc.contributor.authorBlackburn, Jeffrey L.ko
dc.date.accessioned2024-02-21T03:00:16Z-
dc.date.available2024-02-21T03:00:16Z-
dc.date.created2023-12-18-
dc.date.created2023-12-18-
dc.date.issued2023-11-
dc.identifier.citationNANOSCALE HORIZONS, v.9, no.2, pp.278 - 284-
dc.identifier.issn2055-6756-
dc.identifier.urihttp://hdl.handle.net/10203/318167-
dc.description.abstractHigh-performance semiconductor materials and devices are needed to supply the growing energy and computing demand. Organic semiconductors (OSCs) are attractive options for opto-electronic devices, due to their low cost, extensive tunability, easy fabrication, and flexibility. Semiconducting single-walled carbon nanotubes (s-SWCNTs) have been extensively studied due to their high carrier mobility, stability and opto-electronic tunability. Although molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility. In this work we demonstrate a direct quantification of charge carrier density, and by extension carrier mobility, in chemically doped s-SWCNTs by a nuclear magnetic resonance approach. The experimental results are verified by a phase-space filling doping model, and we suggest this approach should be broadly applicable for OSCs. Our results show that hole mobility in doped s-SWCNT networks increases with increasing charge carrier density, a finding that is contrary to that expected for mobility limited by ionized impurity scattering. We discuss the implications of this important finding for additional tunability and applicability of s-SWCNT and OSC devices. Molecular charge transfer doping affords widely tunable carrier density and conductivity in s-SWCNTs (and OSCs in general), however, a pervasive challenge for such systems is reliable measurement of charge carrier density and mobility.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleCarrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance-
dc.typeArticle-
dc.identifier.wosid001112647000001-
dc.identifier.scopusid2-s2.0-85179167175-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue2-
dc.citation.beginningpage278-
dc.citation.endingpage284-
dc.citation.publicationnameNANOSCALE HORIZONS-
dc.identifier.doi10.1039/d3nh00480e-
dc.contributor.localauthorKim, Yong-Hyun-
dc.contributor.nonIdAuthorHermosilla-Palacios, M. Alejandra-
dc.contributor.nonIdAuthorMartinez, Marissa-
dc.contributor.nonIdAuthorDoud, Evan A.-
dc.contributor.nonIdAuthorHertel, Tobias-
dc.contributor.nonIdAuthorSpokoyny, Alexander M.-
dc.contributor.nonIdAuthorCambre, Sofie-
dc.contributor.nonIdAuthorWenseleers, Wim-
dc.contributor.nonIdAuthorFerguson, Andrew J.-
dc.contributor.nonIdAuthorBlackburn, Jeffrey L.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle; Early Access-
dc.subject.keywordPlusORGANIC SEMICONDUCTORS-
dc.subject.keywordPlusCHEMICAL-SHIFTS-
dc.subject.keywordPlusNMR-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusSURFACE-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0