Extreme resilience and dissipation in heterogeneous elasto-plastomeric crystals

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 87
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Gisooko
dc.contributor.authorLee, Jaeheeko
dc.contributor.authorLee, Seunghyeonko
dc.contributor.authorRudykh, Stephanko
dc.contributor.authorCho, Hansohlko
dc.date.accessioned2024-01-10T05:01:39Z-
dc.date.available2024-01-10T05:01:39Z-
dc.date.created2023-12-27-
dc.date.created2023-12-27-
dc.date.issued2024-01-
dc.identifier.citationSOFT MATTER, v.20, no.2, pp.315 - 329-
dc.identifier.issn1744-683X-
dc.identifier.urihttp://hdl.handle.net/10203/317622-
dc.description.abstractWe present a microstructure-topology-based approach for designing macroscopic, heterogeneous soft materials that exhibit outstanding mechanical resilience and energy dissipation. We investigate a variety of geometric configurations of resilient yet dissipative heterogeneous elasto-plastomeric materials that possess long-range order whose microstructural features are inspired by crystalline metals and block copolymers. We combine experiments and numerical simulations on 3D-printed prototypes to study the extreme mechanics of these heterogeneous soft materials under cyclic deformation conditions up to an extreme strain of >200% with strain rates ranging from quasi-static (5.0 x 10(-3) s(-1)) to high levels of >6.0 x 10(1) s(-1). Moreover, we investigate the complexity of elastic and inelastic "unloading" mechanisms crucial for the understanding of shape recovery and energy dissipation in extreme loading situations. Furthermore, we propose a simple but physically intuitive approach for designing microstructures that exhibit a nearly isotropic behavior in both elasticity and inelasticity across different crystallographic orientations from small to large strains. Overall, our study sets a significant step toward the development of sustainable, heterogeneous soft material architectures at macroscopic scales that can withstand harsh mechanical environments.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleExtreme resilience and dissipation in heterogeneous elasto-plastomeric crystals-
dc.typeArticle-
dc.identifier.wosid001122446500001-
dc.identifier.scopusid2-s2.0-85179822446-
dc.type.rimsART-
dc.citation.volume20-
dc.citation.issue2-
dc.citation.beginningpage315-
dc.citation.endingpage329-
dc.citation.publicationnameSOFT MATTER-
dc.identifier.doi10.1039/d3sm01076g-
dc.contributor.localauthorCho, Hansohl-
dc.contributor.nonIdAuthorRudykh, Stephan-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSTRESS-STRAIN BEHAVIOR-
dc.subject.keywordPlusARCHITECTED MATERIALS-
dc.subject.keywordPlusMECHANICAL RESILIENCE-
dc.subject.keywordPlusENERGY-ABSORPTION-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusMETAMATERIALS-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusDESIGN-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0