Variability in GRMHD Simulations of Sgr A*: Implications for EHT Closure Phase Observations

Cited 21 time in webofscience Cited 0 time in scopus
  • Hit : 56
  • Download : 0
Closure phases along different baseline triangles carry a large amount of information regarding the structures of the images of black holes in interferometric observations with the Event Horizon Telescope. We use long time span, high cadence, GRMHD+radiative transfer models of Sgr A* to investigate the expected variability of closure phases in such observations. We find that, in general, closure phases along small baseline triangles show little variability, except in the cases when one of the triangle vertices crosses one of the small regions of low visibility amplitude. The closure phase variability increases with the size of the baseline triangle, as larger baselines probe the small-scale structures of the images, which are highly variable. On average, the funnel-dominated MAD models show less closure phase variability than the disk-dominated SANE models, even in the large baseline triangles, because the images from the latter are more sensitive to the turbulence in the accretion flow. Our results suggest that image reconstruction techniques need to explicitly take into account the closure phase variability, especially if the quality and quantity of data allow for a detailed characterization of the nature of variability. This also implies that, if image reconstruction techniques that rely on the assumption of a static image are utilized, regions of the u-v space that show a high level of variability will need to be identified and excised.
Publisher
IOP PUBLISHING LTD
Issue Date
2017-07
Language
English
Article Type
Article
Citation

ASTROPHYSICAL JOURNAL, v.844, no.1

ISSN
0004-637X
DOI
10.3847/1538-4357/aa7751
URI
http://hdl.handle.net/10203/314246
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0