A parametric computational-fluid-dynamics study on improving the performance of a flat membrane reactor for on-site hydrogen production

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 73
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYoo, Jae Youngko
dc.contributor.authorLee, Jaemyungko
dc.contributor.authorLee, Heedaeko
dc.contributor.authorKang, Juhyunko
dc.contributor.authorBae, Minseokko
dc.contributor.authorBae, Joongmyeonko
dc.date.accessioned2023-10-24T05:00:58Z-
dc.date.available2023-10-24T05:00:58Z-
dc.date.created2023-10-24-
dc.date.created2023-10-24-
dc.date.issued2023-09-
dc.identifier.citationCHEMICAL ENGINEERING RESEARCH & DESIGN, v.197, pp.821 - 837-
dc.identifier.issn0263-8762-
dc.identifier.urihttp://hdl.handle.net/10203/313696-
dc.description.abstractHydrogen stations have limited geographic coverage despite the rising demand for fuel cell electric vehicles. An on-site hydrogen production system that utilizes the liquid-fuel infrastructure can improve access to hydrogen in remote areas. The system has a pressurized steam reformer to convert the liquid fuel and a catalytic membrane reactor to produce high-purity hydrogen. This comprehensive computational-fluid-dynamics study aims to enhance the performance of the membrane reactor. We validate our models of a water-gas-shift catalyst reactor, the membrane reactor with high-purity hydrogen, and the same reactor loaded with the catalyst. The flow configuration, inlet, and outlet of the reactor are then changed to enhance the performance. We enlarge the membrane area at constant catalyst volume and observe 97% of the maximum hydrogen permeation at 38.5 cm2. This work is significant because it describes a step-by-step approach to improving the performance of a given reactor for future studies of membrane-reactor design.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleA parametric computational-fluid-dynamics study on improving the performance of a flat membrane reactor for on-site hydrogen production-
dc.typeArticle-
dc.identifier.wosid001075824800001-
dc.identifier.scopusid2-s2.0-85170252405-
dc.type.rimsART-
dc.citation.volume197-
dc.citation.beginningpage821-
dc.citation.endingpage837-
dc.citation.publicationnameCHEMICAL ENGINEERING RESEARCH & DESIGN-
dc.identifier.doi10.1016/j.cherd.2023.08.027-
dc.contributor.localauthorBae, Joongmyeon-
dc.contributor.nonIdAuthorYoo, Jae Young-
dc.contributor.nonIdAuthorKang, Juhyun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorOn -site hydrogen-
dc.subject.keywordAuthorMembrane reactor-
dc.subject.keywordAuthorComputational fluid dynamics-
dc.subject.keywordAuthorReactor geometry-
dc.subject.keywordAuthorOptimization-
dc.subject.keywordPlusGAS SHIFT REACTION-
dc.subject.keywordPlusPRESSURE SWING ADSORPTION-
dc.subject.keywordPlusPREFERENTIAL OXIDATION-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusFUELS-
dc.subject.keywordPlusOIL-
dc.subject.keywordPlusTECHNOLOGIES-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0