SNR enhanced high-speed two-photon microscopy using a pulse picker and time gating detection

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 88
  • Download : 0
Two-photon microscopy (TPM) is an attractive biomedical imaging method due to its large penetration depth and optical sectioning capability. In particular, label-free autofluorescence imaging offers various advantages for imaging biological samples. However, relatively low intensity of autofluorescence leads to low signal-to-noise ratio (SNR), causing practical challenges for imaging biological samples. In this study, we present TPM using a pulse picker to utilize low pulse repetition rate of femtosecond pulsed laser to increase the pulse peak power of the excitation source leading to higher emission of two-photon fluorescence with the same average illumination power. Stronger autofluorescence emission allowed us to obtain higher SNR images of arterial and liver tissues. In addition, by applying the time gating detection method to the pulse signals obtained by TPM, we were able to significantly reduce the background noise of two-photon images. As a result, our TPM system using the pulsed light source with a 19 times lower repetition rate allowed us to obtain the same SNR image more than 19 times faster with the same average power. Although high pulse energy can increase the photobleaching, we also observed that high-speed imaging with low total illumination energy can mitigate the photobleaching effect to a level similar to that of conventional illumination with a high repetition rate. We anticipate that this simple approach will provide guidance for SNR enhancement with high-speed imaging in TPM as well as other nonlinear microscopy.
Publisher
NATURE PORTFOLIO
Issue Date
2023-08
Language
English
Article Type
Article
Citation

SCIENTIFIC REPORTS, v.13, no.1

ISSN
2045-2322
DOI
10.1038/s41598-023-41270-7
URI
http://hdl.handle.net/10203/313163
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0