RényiCL: Contrastive Representation Learning with Skew Rényi Divergence

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 40
  • Download : 0
Contrastive representation learning seeks to acquire useful representations by estimating the shared information between multiple views of data. Here, the choice of data augmentation is sensitive to the quality of learned representations: as harder the data augmentations are applied, the views share more task-relevant information, but also task-irrelevant one that can hinder the generalization capability of representation. Motivated by this, we present a new robust contrastive learning scheme, coined RényiCL, which can effectively manage harder augmentations by utilizing Rényi divergence. Our method is built upon the variational lower bound of Rényi divergence, but a naïve usage of a variational method is impractical due to the large variance. To tackle this challenge, we propose a novel contrastive objective that conducts variational estimation of a skew Rényi divergence and provide a theoretical guarantee on how variational estimation of skew divergence leads to stable training. We show that Rényi contrastive learning objectives perform innate hard negative sampling and easy positive sampling simultaneously so that it can selectively learn useful features and ignore nuisance features. Through experiments on ImageNet, we show that Rényi contrastive learning with stronger augmentations outperforms other self-supervised methods without extra regularization or computational overhead. Moreover, we also validate our method on other domains such as graph and tabular, showing empirical gain over other contrastive methods. The implementation and pre-trained models are available at.
Publisher
Neural information processing systems foundation
Issue Date
2022-11
Language
English
Citation

36th Conference on Neural Information Processing Systems, NeurIPS 2022

URI
http://hdl.handle.net/10203/312636
Appears in Collection
AI-Conference Papers(학술대회논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0