Super-resolving material microstructure image via deep learning for microstructure characterization and mechanical behavior analysis

Cited 30 time in webofscience Cited 0 time in scopus
  • Hit : 62
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJung, Jaimyunko
dc.contributor.authorNa, Juwonko
dc.contributor.authorPark, Hyung Keunko
dc.contributor.authorPark, Jeong Minko
dc.contributor.authorKim, Gyuwonko
dc.contributor.authorLee, Seungchulko
dc.contributor.authorKim, Hyoung Seopko
dc.date.accessioned2023-09-13T03:01:06Z-
dc.date.available2023-09-13T03:01:06Z-
dc.date.created2023-09-13-
dc.date.created2023-09-13-
dc.date.issued2021-06-
dc.identifier.citationNPJ COMPUTATIONAL MATERIALS, v.7, no.1-
dc.identifier.issn2057-3960-
dc.identifier.urihttp://hdl.handle.net/10203/312549-
dc.description.abstractThe digitized format of microstructures, or digital microstructures, plays a crucial role in modern-day materials research. Unfortunately, the acquisition of digital microstructures through experimental means can be unsuccessful in delivering sufficient resolution that is necessary to capture all relevant geometric features of the microstructures. The resolution-sensitive microstructural features overlooked due to insufficient resolution may limit one's ability to conduct a thorough microstructure characterization and material behavior analysis such as mechanical analysis based on numerical modeling. Here, a highly efficient super-resolution imaging based on deep learning is developed using a deep super-resolution residual network to super-resolved low-resolution (LR) microstructure data for microstructure characterization and finite element (FE) mechanical analysis. Microstructure characterization and FE model based mechanical analysis using the super-resolved microstructure data not only proved to be as accurate as those based on high-resolution (HR) data but also provided insights on local microstructural features such as grain boundary normal and local stress distribution, which can be only partially considered or entirely disregarded in LR data-based analysis.-
dc.languageEnglish-
dc.publisherNATURE RESEARCH-
dc.titleSuper-resolving material microstructure image via deep learning for microstructure characterization and mechanical behavior analysis-
dc.typeArticle-
dc.identifier.wosid000667885600001-
dc.type.rimsART-
dc.citation.volume7-
dc.citation.issue1-
dc.citation.publicationnameNPJ COMPUTATIONAL MATERIALS-
dc.identifier.doi10.1038/s41524-021-00568-8-
dc.contributor.localauthorLee, Seungchul-
dc.contributor.nonIdAuthorJung, Jaimyun-
dc.contributor.nonIdAuthorNa, Juwon-
dc.contributor.nonIdAuthorPark, Hyung Keun-
dc.contributor.nonIdAuthorPark, Jeong Min-
dc.contributor.nonIdAuthorKim, Gyuwon-
dc.contributor.nonIdAuthorKim, Hyoung Seop-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusDUAL-PHASE STEEL-
dc.subject.keywordPlusTENSILE BEHAVIOR-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusDEFORMATION-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 30 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0