TCAD augmented generative adversarial network for hot-spot detection and mask-layout optimization in a large area HARC etching process

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 209
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKwon, Hyoungcheolko
dc.contributor.authorHuh, Hyunsukko
dc.contributor.authorSeo, Hwiwonko
dc.contributor.authorHan, Songheeko
dc.contributor.authorWon, Imheeko
dc.contributor.authorSue, Jiwoongko
dc.contributor.authorOh, Dongyeanko
dc.contributor.authorIza, Felipeko
dc.contributor.authorLee, Seungchulko
dc.contributor.authorPark, Sung Kyeko
dc.contributor.authorCha, Seonyongko
dc.date.accessioned2023-09-13T03:00:40Z-
dc.date.available2023-09-13T03:00:40Z-
dc.date.created2023-09-13-
dc.date.created2023-09-13-
dc.date.issued2022-07-
dc.identifier.citationPHYSICS OF PLASMAS, v.29, no.7-
dc.identifier.issn1070-664X-
dc.identifier.urihttp://hdl.handle.net/10203/312543-
dc.description.abstractCost-effective vertical etching of plug holes and word lines is crucial in enhancing 3D NAND device manufacturability. Even though multiscale technology computer-aided design (TCAD) methodology is suitable for effectively predicting etching processes and optimizing recipes, it is highly time-consuming. This article demonstrates that our deep learning platform called TCAD-augmented Generative Adversarial Network can reduce the computational load by 2 600 000 times. In addition, because well-calibrated TCAD data based on physical and chemical mutual reactions are used to train the platform, the etching profile can be predicted with the same accuracy as TCAD-only even when the actual experimental data are scarce. This platform opens up new applications, such as hot spot detection and mask layout optimization, in a chip-level area of 3D NAND fabrication. Published under an exclusive license by AIP Publishing.-
dc.languageEnglish-
dc.publisherAIP Publishing-
dc.titleTCAD augmented generative adversarial network for hot-spot detection and mask-layout optimization in a large area HARC etching process-
dc.typeArticle-
dc.identifier.wosid000827554900005-
dc.identifier.scopusid2-s2.0-85133963169-
dc.type.rimsART-
dc.citation.volume29-
dc.citation.issue7-
dc.citation.publicationnamePHYSICS OF PLASMAS-
dc.identifier.doi10.1063/5.0093076-
dc.contributor.localauthorLee, Seungchul-
dc.contributor.nonIdAuthorKwon, Hyoungcheol-
dc.contributor.nonIdAuthorHuh, Hyunsuk-
dc.contributor.nonIdAuthorSeo, Hwiwon-
dc.contributor.nonIdAuthorHan, Songhee-
dc.contributor.nonIdAuthorWon, Imhee-
dc.contributor.nonIdAuthorSue, Jiwoong-
dc.contributor.nonIdAuthorOh, Dongyean-
dc.contributor.nonIdAuthorIza, Felipe-
dc.contributor.nonIdAuthorPark, Sung Kye-
dc.contributor.nonIdAuthorCha, Seonyong-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0