Dynamic coordination of two-metal-ions orchestrates lambda-exonuclease catalysis

Cited 21 time in webofscience Cited 0 time in scopus
  • Hit : 91
  • Download : 0
Metal ions at the active site of an enzyme act as cofactors, and their dynamic fluctuations can potentially influence enzyme activity. Here, we use lambda-exonuclease as a model enzyme with two Mg2+ binding sites and probe activity at various concentrations of magnesium by single-molecule-FRET. We find that while Mg-A(2+) and Mg-B(2+) have similar binding constants, the dissociation rate of Mg-A(2+) is two order of magnitude lower than that of Mg-B(2+) due to a kinetic-barrier-difference. At physiological Mg2+ concentration, the Mg-B(2+) ion near the 5'-terminal side of the scissile phosphate dissociates each-round of degradation, facilitating a series of DNA cleavages via fast product-release concomitant with enzyme-translocation. At a low magnesium concentration, occasional dissociation and slow re-coordination of Mg-A(2+) result in pauses during processive degradation. Our study highlights the importance of metal-ion-coordination dynamics in correlation with the enzymatic reaction-steps, and offers insights into the origin of dynamic heterogeneity in enzymatic catalysis.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2018-10
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.9

ISSN
2041-1723
DOI
10.1038/s41467-018-06750-9
URI
http://hdl.handle.net/10203/312440
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0