Snap-through dynamics of a buckled flexible filament in a uniform flow

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 139
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorMao, Qianko
dc.contributor.authorLiu, Yingzhengko
dc.contributor.authorSung, Hyung Jinko
dc.date.accessioned2023-09-05T01:00:59Z-
dc.date.available2023-09-05T01:00:59Z-
dc.date.created2023-09-04-
dc.date.created2023-09-04-
dc.date.issued2023-08-
dc.identifier.citationJOURNAL OF FLUID MECHANICS, v.969-
dc.identifier.issn0022-1120-
dc.identifier.urihttp://hdl.handle.net/10203/312186-
dc.description.abstractThe flow-induced snap-through dynamics of a buckled flexible filament was explored using the penalty immersed boundary method. The effects of the filament length, bending rigidity and Reynolds number on the mode transition were systematically examined. Three different modes were observed when the aforementioned parameters were varied: an equilibrium mode, a streamwise oscillation mode and a snap-through oscillation mode. Two mode transitions occurred when the bending rigidity was lowered and the length and Reynolds number were increased: a direct transition from the equilibrium mode to the snap-through oscillation mode and the successive appearance of the three modes. An increase in transverse fluid force induced the snap-through oscillation mode. A vortex-induced vibration and a self-excited vibration occurred in the streamwise oscillation mode and the snap-through oscillation mode, respectively. A wake pattern of 2S appeared in the streamwise oscillation mode, and a pattern of 2S + 2P appeared in the snap-through oscillation mode. A hysteresis was observed near the critical Reynolds number. The hysteresis loop increased in magnitude with increasing bending rigidity. The greater energy harvesting was achieved by the larger deflection and the higher strain energy. We found that most of the strain energy was concentrated in the last half of the filament.-
dc.languageEnglish-
dc.publisherCAMBRIDGE UNIV PRESS-
dc.titleSnap-through dynamics of a buckled flexible filament in a uniform flow-
dc.typeArticle-
dc.identifier.wosid001052553000001-
dc.identifier.scopusid2-s2.0-85170636520-
dc.type.rimsART-
dc.citation.volume969-
dc.citation.publicationnameJOURNAL OF FLUID MECHANICS-
dc.identifier.doi10.1017/jfm.2023.596-
dc.contributor.localauthorSung, Hyung Jin-
dc.contributor.nonIdAuthorMao, Qian-
dc.contributor.nonIdAuthorLiu, Yingzheng-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorflow-structure interactions-
dc.subject.keywordPlusPIEZOELECTRIC FLAGS-
dc.subject.keywordPlusFLAPPING DYNAMICS-
dc.subject.keywordPlusINVERTED FLAG-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusBOUNDARY-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCYLINDER-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0