Liquid dielectric layer-based microfluidic capacitive sensor for wireless pressure monitoring

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 91
  • Download : 0
Microfluidic capacitive sensors with enhanced performance and wireless sensing capability present great ad-vantages for various pressure sensor applications. In this work, a liquid dielectric layer (LDL)-based wireless capacitive sensor for high sensitivity and low-pressure detection has been demonstrated. The wireless capacitive sensor was designed based on an LC resonant circuit model and integrated into a microfluidic device by intro-ducing liquid-metal Galinstan into polydimethylsiloxane (PDMS) microchannels. The effect of various dielectric mediums (air, deionized (DI) water, and saline) on the performance of the capacitive sensor was characterized to study the sensitivity and robustness of the devices. Moreover, the high permittivity of liquid dielectric mediums enhances the sensitivity of the pressure sensor. The sensitivities of 0.0043 kPa-1, 0.0111 kPa-1, and 0.0125 kPa-1 were achieved for air, DI water, and saline-based dielectric mediums, respectively, for a low-pressure region of 0-10 kPa. Furthermore, we fabricated the wireless pressure sensor in three different form factors to enhance the applicability of the flexible wireless sensor. We also demonstrated the possibility of wirelessly monitoring human motion through real-time pressure detection using capacitive sensors fabricated with a liquid dielectric medium. The proposed LDL-based capacitive sensor, with high sensitivity, could be a potential candidate for low-pressure sensor applications, especially in detecting subtle pressure from the human body.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2023-08
Language
English
Article Type
Article
Citation

SENSORS AND ACTUATORS A-PHYSICAL, v.357

ISSN
0924-4247
DOI
10.1016/j.sna.2023.114393
URI
http://hdl.handle.net/10203/312184
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0