Coding across heterogeneous parallel erasure broadcast channels is useful

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 35
  • Download : 0
Motivated by recent efforts to harness millimeter-wave (mmWave) bands, known to have high outage probabilities, we explore a K-user parallel packet-erasure broadcast channel that consists of orthogonal subchannels prone to packet-erasures. Our main result is two-fold. First, in the homogeneous channel where all subchannels have the same erasure probability, we show that the separation principle holds, i.e., coding across subchannels provides no gain. Second, in the heterogeneous channel where the subchannels have different erasure probabilities, we devise a scheme that employs coding across subchannels and show that the principle fails to hold, i.e., coding across subchannels provides a gain. Inspired by this finding, we demonstrate our scheme to be effective in harnessing the mmWave bands. Compared to the current approach in the 4G systems which allocates subchannels to users exclusively, we show that our scheme offers a huge gain. We find the gain to be significant in scenarios where the erasure probabilities are largely different, and importantly to increase with the growth of K. Our result calls for joint coding schemes in future wireless systems to meet growing mobile data demands.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2017-06
Language
English
Citation

IEEE International Symposium on Information Theory, ISIT 2017, pp.1883 - 1887

ISSN
2157-8095
DOI
10.1109/ISIT.2017.8006856
URI
http://hdl.handle.net/10203/311954
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0