Homogenization of multi-institutional chest x-ray images in various data transformation schemes

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 114
  • Download : 0
Purpose Although there are several options for improving the generalizability of learned models, a data instance-based approach is desirable when stable data acquisition conditions cannot be guaranteed. Despite the wide use of data transformation methods to reduce data discrepancies between different data domains, detailed analysis for explaining the performance of data transformation methods is lacking. Approach This study compares several data transformation methods in the tuberculosis detection task with multi-institutional chest x-ray (CXR) data. Five different data transformations, including normalization, standardization with and without lung masking, and multi-frequency-based (MFB) standardization with and without lung masking were implemented. A tuberculosis detection network was trained using a reference dataset, and the data from six other sites were used for the network performance comparison. To analyze data harmonization performance, we extracted radiomic features and calculated the Mahalanobis distance. We visualized the features with a dimensionality reduction technique. Through similar methods, deep features of the trained networks were also analyzed to examine the models’ responses to the data from various sites. Results From various numerical assessments, the MFB standardization with lung masking provided the highest network performance for the non-reference datasets. From the radiomic and deep feature analyses, the features of the multi-site CXRs after MFB with lung masking were found to be well homogenized to the reference data, whereas the others showed limited performance. Conclusions Conventional normalization and standardization showed suboptimal performance in minimizing feature differences among various sites. Our study emphasizes the strengths of MFB standardization with lung masking in terms of network performance and feature homogenization.
Publisher
SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
Issue Date
2023-11
Language
English
Article Type
Article
Citation

JOURNAL OF MEDICAL IMAGING, v.10, no.06

ISSN
2329-4302
DOI
10.1117/1.jmi.10.6.061103
URI
http://hdl.handle.net/10203/311935
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0