Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 406
  • Download : 0
The pulverization of lithium metal electrodes during cycling recently has been suppressed through various techniques, but the issue of irreversible consumption of the electrolyte remains a critical challenge, hindering the progress of energy-dense lithium metal batteries. Here, we design a single-ion-conductor-based composite layer on the lithium metal electrode, which significantly reduces the liquid electrolyte loss via adjusting the solvation environment of moving Li+ in the layer. A Li||Ni0.5Mn0.3Co0.2O2 pouch cell with a thin lithium metal (N/P of 2.15), high loading cathode (21.5 mg cm(-2)), and carbonate electrolyte achieves 400 cycles at the electrolyte to capacity ratio of 2.15 g Ah(-1) (2.44 g Ah(-1) including mass of composite layer) or 100 cycles at 1.28 g Ah(-1) (1.57 g Ah(-1) including mass of composite layer) under a stack pressure of 280 kPa (0.2 C charge with a constant voltage charge at 4.3 V to 0.05 C and 1.0 C discharge within a voltage window of 4.3 V to 3.0 V). The rational design of the single-ion-conductor-based composite layer demonstrated in this work provides a way forward for constructing energy-dense rechargeable lithium metal batteries with minimal electrolyte content. The reactivity between lithium and a liquid electrolyte leads to degradation of a lithium metal battery, resulting in the depletion of the liquid electrolyte. Here, authors develop a composite layer that can mitigate the reactivity and consequently enable long-cycling lithium metal batteries.
Publisher
NATURE PORTFOLIO
Issue Date
2023-07
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.14, no.1

ISSN
2041-1723
DOI
10.1038/s41467-023-39673-1
URI
http://hdl.handle.net/10203/311753
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0