Entanglement Tsunami: Universal Scaling in Holographic Thermalization

Cited 244 time in webofscience Cited 0 time in scopus
  • Hit : 119
  • Download : 0
We consider the time evolution of entanglement entropy after a global quench in a strongly coupled holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement, the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon of the black hole, resulting in regimes of pre-local-equilibration quadratic growth (in time), post-local-equilibration linear growth, a late-time regime in which the evolution does not carry memory of the size and shape of the entangled region, and a saturation regime with critical behavior resembling those in continuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an "entanglement tsunami" carries entanglement inward from the boundary. We also make a conjecture on the maximal rate of entanglement growth in relativistic systems.
Publisher
AMER PHYSICAL SOC
Issue Date
2014-01
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW LETTERS, v.112, no.1

ISSN
0031-9007
DOI
10.1103/PhysRevLett.112.011601
URI
http://hdl.handle.net/10203/311612
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 244 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0