Simultaneous retention of organic and inorganic contaminants by a ceramic nanofiltration membrane for the treatment of semiconductor wastewater

Cited 23 time in webofscience Cited 0 time in scopus
  • Hit : 66
  • Download : 0
The semiconductor manufacturing industry produces large amounts of ammonia-contaminated waste -waters which require costly and energy-intensive treatments. This study demonstrates the application of a commercially available ceramic nanofiltration (NF) membrane for the control of organic and inorganic contaminants as well as ammonium retention in the treatment of semiconductor wastewater. Analysis of the hydrodynamic pore transport model based on the direct measurement of membrane thickness in the active layer indicated that the ceramic NF membrane has an average pore radius of asymptotic to 0.65 nm. Zeta potential measurements of the ceramic NF membrane showed that the membrane surface was negatively charged at neutral pH. The ammonium retention capacity of the ceramic NF membrane was evaluated using a single symmetric ammonium salt solution (1.8 mM NH4HCO3; i.e., the average ammonium concentration in semiconductor wastewater) and combined salt solutions (mixtures of 1.8 mM NH4HCO3 and either 2.0 mM of Na2SO4, CaSO4, or CaCl2). The combined NH4HCO3 and Na2SO4 solution rendered a remarkably high ammonium retention rate of 88.7%, which was attributed to higher valency co-ions (SO42-) in this solution with the same negative surface charge of the ceramic NF membrane. In contrast, the calcium ions (Ca2+) in different combined salt solutions containing CaSO4 and CaCl(2 )interfered with ammonium retention. We further employed the ceramic NF membrane to treat semiconductor wastewater samples taken from a full-scale semiconductor wastewater treatment plant and demonstrated that this proposed treatment method could effectively retain organic and inorganic contaminants with a low fouling propensity. Our results highlight the promising potential of ceramic NF membranes for the treatment of industrial wastewaters with diverse organic and inorganic contaminants. (C) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
Publisher
ELSEVIER
Issue Date
2022-03
Language
English
Article Type
Article
Citation

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, v.159, pp.525 - 533

ISSN
0957-5820
DOI
10.1016/j.psep.2022.01.032
URI
http://hdl.handle.net/10203/311077
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 23 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0