Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 100
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Seungjunko
dc.contributor.authorSeo, Dongjeako
dc.contributor.authorPark, Sang Hyunko
dc.contributor.authorIzquierdo, Nezhueytlko
dc.contributor.authorLee, Eng Hockko
dc.contributor.authorYounas, Rehanko
dc.contributor.authorZhou, Guanyuko
dc.contributor.authorPalei, Milanko
dc.contributor.authorHoffman, Anthony J.ko
dc.contributor.authorJang, Min Seokko
dc.contributor.authorHinkle, Christopher L.ko
dc.contributor.authorKoester, Steven J.ko
dc.contributor.authorLow, Tonyko
dc.date.accessioned2023-07-27T05:01:31Z-
dc.date.available2023-07-27T05:01:31Z-
dc.date.created2023-07-27-
dc.date.issued2023-07-
dc.identifier.citationNATURE COMMUNICATIONS, v.14, no.1-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/310856-
dc.description.abstractNear-perfect light absorbers (NPLAs), with absorbance, A, of at least 99%, have a wide range of applications ranging from energy and sensing devices to stealth technologies and secure communications. Previous work on NPLAs has mainly relied upon plasmonic structures or patterned metasurfaces, which require complex nanolithography, limiting their practical applications, particularly for large-area platforms. Here, we use the exceptional band nesting effect in TMDs, combined with a Salisbury screen geometry, to demonstrate NPLAs using only two or three uniform atomic layers of transition metal dichalcogenides (TMDs). The key innovation in our design, verified using theoretical calculations, is to stack monolayer TMDs in such a way as to minimize their interlayer coupling, thus preserving their strong band nesting properties. We experimentally demonstrate two feasible routes to controlling the interlayer coupling: twisted TMD bi-layers and TMD/buffer layer/TMD tri-layer heterostructures. Using these approaches, we demonstrate room-temperature values of A=95% at ?=2.8 eV with theoretically predicted values as high as 99%. Moreover, the chemical variety of TMDs allows us to design NPLAs covering the entire visible range, paving the way for efficient atomically-thin optoelectronics.-
dc.languageEnglish-
dc.publisherNATURE PORTFOLIO-
dc.titleAchieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting-
dc.typeArticle-
dc.identifier.wosid001022536900004-
dc.identifier.scopusid2-s2.0-85163699887-
dc.type.rimsART-
dc.citation.volume14-
dc.citation.issue1-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-023-39450-0-
dc.contributor.localauthorJang, Min Seok-
dc.contributor.nonIdAuthorLee, Seungjun-
dc.contributor.nonIdAuthorSeo, Dongjea-
dc.contributor.nonIdAuthorPark, Sang Hyun-
dc.contributor.nonIdAuthorIzquierdo, Nezhueytl-
dc.contributor.nonIdAuthorLee, Eng Hock-
dc.contributor.nonIdAuthorYounas, Rehan-
dc.contributor.nonIdAuthorZhou, Guanyu-
dc.contributor.nonIdAuthorPalei, Milan-
dc.contributor.nonIdAuthorHoffman, Anthony J.-
dc.contributor.nonIdAuthorHinkle, Christopher L.-
dc.contributor.nonIdAuthorKoester, Steven J.-
dc.contributor.nonIdAuthorLow, Tony-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusELECTRONIC-STRUCTURE-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusCONDUCTION-
dc.subject.keywordPlusGRAPHENE-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0