Multiscale simulations for estimating mechanical properties of ion irradiated 308 based on microstructural featuresMultiscale simulations for estimating mechanical properties of ion irradiated 308 based on microstructural features

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 188
  • Download : 0
Austenitic stainless steel welds (ASSWs) of nuclear components undergo aging-related degradations caused by high temperature and neutron radiation. Since irradiation leads to the change of material characteristics, relevant quantification is important for long-term operation, but limitations exist. Although ion irradiation is utilized to emulate neutron irradiation, its penetration depth is too shallow to measure bulk properties. In this study, a systematic approach was suggested to estimate mechanical properties of ion irradiated 308 ASSW. First of all, weld specimens were irradiated by 2 MeV proton to 1 and 10 dpa. Microstructure evolutions due to irradiation in d-ferrite and austenite phases were characterized and micropillar compression tests were performed. In succession, dislocation density based stress-strain (S-S) relationships and quantification models of irradiation defects were adopted to define phases in finite element analyses. Resultant microscopic S-S curves were compared to verify material parameters. Finally, macroscopic behaviors were calculated by multiscale simulations using real microstructure based representative volume element (RVE). Validity of the approach was verified for the unirradiated specimens such that the estimated S-S curves and 0.2% offset yield strengths (YSs) which was 363.14 MPa were in 10% agreement with test. For irradiated specimens, the estimated YS were 917.41 MPa in 9% agreement.& COPY; 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Publisher
KOREAN NUCLEAR SOC
Issue Date
2023-08
Language
English
Article Type
Article
Citation

NUCLEAR ENGINEERING AND TECHNOLOGY, v.55, no.8, pp.2823 - 2834

ISSN
1738-5733
DOI
10.1016/j.net.2023.05.011
URI
http://hdl.handle.net/10203/310854
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0