A 124-dBm Sensitivity Interference-Resilient Direct-Conversion Duty-Cycled Wake-Up Receiver Achieving 0.114 mW at 1.966-s Wake-Up Latency

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 130
  • Download : 0
This article presents an interference-resilient high-sensitivity binary frequency-shift keying (BFSK) multi-channel wake-up receiver (WuRX) supporting 900-MHz bands for low-power wide-area network (LPWAN) applications. The proposed WuRX uses a direct-conversion architecture, a frequency-to-energy demodulator, and a 4096-bit correlator. Direct conversion using a 50%-to-25% duty-cycle conversion mixer and two-stage ring voltage-controlled oscillator (VCO) minimizes the power consumption. The frequency-to-energy demodulator offers a process-voltage-temperature (PVT) variation-tolerant symbol recovery based on an image rejection n-path filter (IRNF), a poly-phase filter (PPF), and a quadrature envelope detector (ED). The 4096-bit correlator provides a digital processing gain of about 17 dB, improving both the sensitivity and the selectivity. 'lb reduce the power consumption further, the proposed WuRX supports an asynchronous duty-cycling operation based on repetition of the wake-up code. Implemented in the 55-nm complementary metal-oxide-semiconductor (CMOS), the proposed WuRX achieves sensitivity of -124 dBm in the always-on mode while dissipating 781 mu W. For the duty-cycling mode with wake-up codes repeated 15 times, the proposed WuRX exhibits the same sensitivity of -124 dBm with reduced power consumption of 114 mu W and extended wake-up latency of 1.966 s. The proposed WuRX shows robust interference resilience with a signal-to-interference ratio (SIR) of -76 dB at a 20-MHz offset against a continuous wave (CW). The CMOS radio module, including the proposed WuRX, showed packet-error rates (PERs) of 0% and 5.7% in the 4.8-and 9.8-km ground-to-ground wireless communication tests, respectively.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2023-06
Language
English
Article Type
Article
Citation

IEEE JOURNAL OF SOLID-STATE CIRCUITS, v.58, no.6, pp.1667 - 1680

ISSN
0018-9200
DOI
10.1109/JSSC.2022.3208563
URI
http://hdl.handle.net/10203/310120
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0