Autonomous Interfacial Assembly of Polymer Nanofilms via Surfactant-Regulated Marangoni Instability

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 87
  • Download : 0
Interfacialpolymerization (IP) provides a versatile platform forfabricating defect-free functional nanofilms for various applications,including molecular separation, energy, electronics, and biomedicalmaterials. Unfortunately, coupled with complex natural instabilityphenomena, the IP mechanism and key parameters underlying the structuralevolution of nanofilms, especially in the presence of surfactantsas an interface regulator, remain puzzling. Here, we interfaciallyassembled polymer nanofilm membranes at the free water-oilinterface in the presence of differently charged surfactants and comprehensivelycharacterized their structure and properties. Combined with computationalsimulations, an in situ visualization of interfacial film formationdiscovered the critical role of Marangoni instability induced by thesurfactants via various mechanisms in structurally regulating thenanofilms. Despite their different instability-triggering mechanisms,the delicate control of the surfactants enabled the fabrication ofdefect-free, ultra-permselective nanofilm membranes. Our study identifiescritical IP parameters that allow us to rationally design nanofilms,coatings, and membranes for target applications.
Publisher
AMER CHEMICAL SOC
Issue Date
2023-05
Language
English
Article Type
Article
Citation

NANO LETTERS, v.23, no.11, pp.4822 - 4829

ISSN
1530-6984
DOI
10.1021/acs.nanolett.3c00374
URI
http://hdl.handle.net/10203/310065
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0