Partitioning of diluted anyons reveals their braiding statistics

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 89
  • Download : 0
Correlations of partitioned particles carry essential information about their quantumness1. Partitioning full beams of charged particles leads to current fluctuations, with their autocorrelation (namely, shot noise) revealing the particles’ charge2,3. This is not the case when a highly diluted beam is partitioned. Bosons or fermions will exhibit particle antibunching (owing to their sparsity and discreteness)4–6. However, when diluted anyons, such as quasiparticles in fractional quantum Hall states, are partitioned in a narrow constriction, their autocorrelation reveals an essential aspect of their quantum exchange statistics: their braiding phase7. Here we describe detailed measurements of weakly partitioned, highly diluted, one-dimension-like edge modes of the one-third filling fractional quantum Hall state. The measured autocorrelation agrees with our theory of braiding anyons in the time domain (instead of braiding in space); with a braiding phase of 2θ = 2π/3, without any fitting parameters. Our work offers a relatively straightforward and simple method to observe the braiding statistics of exotic anyonic states, such as non-abelian states8, without resorting to complex interference experiments9.
Publisher
NATURE PORTFOLIO
Issue Date
2023-04
Language
English
Article Type
Article
Citation

NATURE, v.617, no.7960, pp.277 - 281

ISSN
0028-0836
DOI
10.1038/s41586-023-05883-2
URI
http://hdl.handle.net/10203/307188
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0