Loop stacking organizes genome folding from TADs to chromosomes

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 138
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHafner, Antoninako
dc.contributor.authorPark, Minheeko
dc.contributor.authorBerger, Scott E.ko
dc.contributor.authorMurphy, Sedona E.ko
dc.contributor.authorNora, Elphège P.ko
dc.contributor.authorBoettiger, Alistair N.ko
dc.date.accessioned2023-06-08T00:00:08Z-
dc.date.available2023-06-08T00:00:08Z-
dc.date.created2023-06-07-
dc.date.created2023-06-07-
dc.date.created2023-06-07-
dc.date.issued2023-05-
dc.identifier.citationMOLECULAR CELL, v.83, no.9, pp.1377 - 1392-
dc.identifier.issn1097-2765-
dc.identifier.urihttp://hdl.handle.net/10203/307132-
dc.description.abstractAlthough population-level analyses revealed significant roles for CTCF and cohesin in mammalian genome organization, their contributions at the single-cell level remain incompletely understood. Here, we used a super-resolution microscopy approach to measure the effects of removal of CTCF or cohesin in mouse embryonic stem cells. Single-chromosome traces revealed cohesin-dependent loops, frequently stacked at their loop anchors forming multi-way contacts (hubs), bridging across TAD boundaries. Despite these bridging interactions, chromatin in intervening TADs was not intermixed, remaining separated in distinct loops around the hub. At the multi-TAD scale, steric effects from loop stacking insulated local chromatin from ultra-long range (>4 Mb) contacts. Upon cohesin removal, the chromosomes were more disordered and increased cell-cell variability in gene expression. Our data revise the TAD-centric understanding of CTCF and cohesin and provide a multi-scale, structural picture of how they organize the genome on the single-cell level through distinct contributions to loop stacking.-
dc.languageEnglish-
dc.publisherCELL PRESS-
dc.titleLoop stacking organizes genome folding from TADs to chromosomes-
dc.typeArticle-
dc.identifier.wosid000999227200001-
dc.identifier.scopusid2-s2.0-85153619964-
dc.type.rimsART-
dc.citation.volume83-
dc.citation.issue9-
dc.citation.beginningpage1377-
dc.citation.endingpage1392-
dc.citation.publicationnameMOLECULAR CELL-
dc.identifier.doi10.1016/j.molcel.2023.04.008-
dc.contributor.localauthorPark, Minhee-
dc.contributor.nonIdAuthorHafner, Antonina-
dc.contributor.nonIdAuthorBerger, Scott E.-
dc.contributor.nonIdAuthorMurphy, Sedona E.-
dc.contributor.nonIdAuthorNora, Elphège P.-
dc.contributor.nonIdAuthorBoettiger, Alistair N.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusCHROMATIN DOMAINS-
dc.subject.keywordPlusCOHESIN-
dc.subject.keywordPlusENHANCER-
dc.subject.keywordPlusACTIVATION-
dc.subject.keywordPlusBOUNDARIES-
dc.subject.keywordPlusSEQ-
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0