Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory

Cited 9 time in webofscience Cited 0 time in scopus
  • Hit : 110
  • Download : 0
With the exponential growth of the semiconductor industry, radiation hardness has become an indispensable property of memory devices. However, implementation of radiation-hardened semiconductor memory devices inevitably requires various radiation-hardening technologies from the layout level to the system level, and such technologies incur a significant energy overhead. Thus, there is a growing demand for emerging memory devices that are energy-efficient and intrinsically radiation-hard. Here, we report a nanoelectromechanical non-volatile memory (NEM-NVM) with an ultra-low energy consumption and radiation-hardness. To achieve an ultra-low operating energy of less than 10 fJ bit (-1), we introduce an out-of-plane electrode configuration and electrothermal erase operation. These approaches enable the NEM-NVM to be programmed with an ultra-low energy of 2.83 fJ bit(-1). Furthermore, due to its mechanically operating mechanisms and radiation robust structural material, the NEM-NVM retains its superb characteristics without radiation-induced degradation such as increased leakage current, threshold voltage shift, and unintended bit -flip even after 1 Mrad irradiation.
Publisher
NATURE PORTFOLIO
Issue Date
2023-01
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.14, no.1

ISSN
2041-1723
DOI
10.1038/s41467-023-36076-0
URI
http://hdl.handle.net/10203/306991
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0