Alkylammonium bis(trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 331
  • Download : 0
In state-of-the-art n-i-p structured perovskite solar cells (PSCs), a dopant for doping hole transporting materials (HTMs) is a crucial component, which affects not only the electrical properties of HTMs, but also the performances and stabilities of PSCs. In this paper, we report new dual functional ionic liquids (ILs) consisting of various alkylammoniums (from butyl to decyl) and bis(trifluoromethylsulfonyl)imide (denoted as BATFSI, HATFSI, OATFSI, and DATFSI) as a dopant and surface passivator for highly efficient and stable PSCs and modules. Among these ILs, OATFSI provides enough miscibility with a poly(triarylamine) solution, which results in a smoother morphology of the hole transporting layer (HTL) with an enhanced electrical property via efficient doping. Simultaneously, OATFSI passivates the perovskite surface in situ, during spin-coating deposition of the HTL. Highly efficient and stable OATFSI-based PSCs are fabricated with a mesoporous n-i-p structure and a maximum power conversion efficiency (PCE) of 23.34%, due to reduced non-radiative recombination and better charge extraction. To verify the scalability of our new IL dopants, perovskite modules with a high PCE of 18.54% (on the aperture area of 224.89 cm(2)) and 19.91% (on the active area of 209.39 cm(2)) are demonstrated. We believe our work provides useful guidelines to achieve efficient and stable PSCs and modules for commercialization.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2023-05
Language
English
Article Type
Article
Citation

ENERGY & ENVIRONMENTAL SCIENCE, v.16, no.5, pp.2226 - 2238

ISSN
1754-5692
DOI
10.1039/d2ee04045j
URI
http://hdl.handle.net/10203/306939
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0