Dynamic Hardening Equation of Nickel-based Superalloy Inconel 718

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 43
  • Download : 0
The dynamic response of the turbine blade materials is indispensable for analysis of erosions of turbine blades as a result of impulsive loading associated with gas flow. This paper is concerned with the dynamic hardening equation of the Nickel-based superalloy Inconel 718 which is widely used in the high speed turbine blade. Reported representative dynamic hardening equations have been constructed and evaluated using the dynamic hardening characteristics of the Inconel 718. Dynamic hardening characteristics of the Inconel 718 have been obtained by uniaxial tensile tests and SHPB tests. Uniaxial tensile tests have been performed with the variation of the strain rate from 0.001/sec to 100/sec and SHPB tests have been conducted at the strain rate ranging up to 4000/sec. Several existing models have been constructed and evaluated for Johnson-Cook model, Zerilli-Armstrong model, Preston-Tonks-Wallace model, modified Johnson-Cook model, and modified Khan-Huang model using test results at various strain rate conditions. The most applicable equation for the Inconel 718 has been suggested by comparison of constructed results.
Publisher
Trans Tech Publications Ltd.
Issue Date
2012-12
Language
English
Citation

11th Asia-Pacific Conference on Engineering Plasticity and Its Applications, AEPA 2012, pp.129 - 132

ISSN
1013-9826
DOI
10.4028/www.scientific.net/KEM.535-536.129
URI
http://hdl.handle.net/10203/306920
Appears in Collection
ME-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0