alpha-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism

Cited 76 time in webofscience Cited 0 time in scopus
  • Hit : 121
  • Download : 83
Background: Mutations in glucocerebrosidase (GBA) cause Gaucher disease (GD) and increase the risk of developing Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB). Since both genetic and environmental factors contribute to the pathogenesis of sporadic PD, we investigated the susceptibility of nigrostriatal dopamine (DA) neurons in L444P GBA heterozygous knock-in (GBA(+/L444P)) mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a selective dopaminergic mitochondrial neurotoxin. Method: We used GBA(+/L444P) mice, alpha-synuclein knockout (SNCA(-/-)) mice at 8 months of age, and adeno-associated virus (AAV)-human GBA overexpression to investigate the rescue effect of DA neuronal loss and susceptibility by MPTP. Mitochondrial morphology and functional assay were used to identify mitochondrial defects in GBA(P)(+/L444) mice. Motor behavioral test, immunohistochemistry, and HPLC were performed to measure dopaminergic degeneration by MPTP and investigate the relationship between GBA mutation and alpha-synuclein. Mitochondrial immunostaining, qPCR, and Western blot were also used to study the effects of alpha-synuclein knockout or GBA overexpression on MPTP-induced mitochondrial defects and susceptibility. Results: L444P GBA heterozygous mutation reduced GBA protein levels, enzymatic activity and a concomitant accumulation of alpha-synuclein in the midbrain of GBA(+/L444P) mice. Furthermore, the deficiency resulted in defects in mitochondria of cortical neurons cultured from GBA(+/L444P) mice. Notably, treatment with MPTP resulted in a significant loss of dopaminergic neurons and striatal dopaminergic fibers in GBA(+/L444P) mice compared to wild type (WT) mice. Levels of striatal DA and its metabolites were more depleted in the striatum of GBA(+/L444P) mice. Behavioral deficits, neuroinflammation, and mitochondrial defects were more exacerbated in GBA(+/L444P) mice after MPTP treatment. Importantly, MPTP induced PD-like symptoms were significantly improved by knockout of asynuclein or augmentation of GBA via AAV5-hGBA injection in both WT and GBA(+/L444P) mice. Intriguingly, the degree of reduction in MPTP induced PD-like symptoms in GBA(+/L444P) alpha-synuclein (SNCA)-/-mice was nearly equal to that in SNCA(-/)-mice after MPTP treatment. Conclusion: Our results suggest that GBA deficiency due to L444P GBA heterozygous mutation and the accompanying accumulation of alpha-synuclein render DA neurons more susceptible to MPTP intoxication. Thus, GBA and alpha-synuclein play dual physiological roles in the survival of DA neurons in response to the mitochondrial dopaminergic neurotoxin, MPTP.
Publisher
BMC
Issue Date
2018-01
Language
English
Article Type
Article
Citation

MOLECULAR NEURODEGENERATION, v.13

ISSN
1750-1326
DOI
10.1186/s13024-017-0233-5
URI
http://hdl.handle.net/10203/306624
Appears in Collection
BC-Journal Papers(저널논문)
Files in This Item
129169.pdf(9.32 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 76 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0