Structure-preserving quality improvement of cone beam CT images using contrastive learning

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 98
  • Download : 0
Cone-beam CT (CBCT) is widely used in dental clinics but exhibits limitations in assessing soft tissue pathology because of its lack of contrast resolution and low Hounsfield Units (HU) quantification accuracy. We aimed to increase the image quality and HU accuracy of CBCTs while preserving anatomical structures. We generated CT-like images from CBCT images using a patchwise contrastive learning-based GAN model. Our model was trained on unpaired CT and CBCT datasets with the novel combination of losses and the feature extractor pretrained on our training dataset. We evaluated the quality of the images generated by our model in terms of Frechet inception distance (FID), peak signal-to-noise ratio (PSNR), mean absolute error (MAE), and root mean square error (RMSE). Additionally, the structure preservation performance was assessed by the structure score. As a result, the generated CT-like images by our model were significantly superior to those generated by various baseline models in terms of FID, PSNR, MAE, RMSE, and structure score. Therefore, we demonstrated that our model provided the complementary benefits of preserving the anatomical structures of the input CBCT images and improving the image quality to be similar to those of CT images.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2023-05
Language
English
Article Type
Article
Citation

COMPUTERS IN BIOLOGY AND MEDICINE, v.158

ISSN
0010-4825
DOI
10.1016/j.compbiomed.2023.106803
URI
http://hdl.handle.net/10203/306443
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0