ConDor: Self-Supervised Canonicalization of 3D Pose for Partial Shapes

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 87
  • Download : 0
Progress in 3D object understanding has relied on manually "canonicalized" shape datasets that contain instances with consistent position and orientation (3D pose). This has made it hard to generalize these methods to in-the-wild shapes, e.g., from internet model collections or depth sensors. ConDor is a self-supervised method that learns to Canonicalize the 3D orientation and position for MI and partial 3D point clouds. We build on top of Tensor Field Networks (TFNs), a class of permutation- and rotation-equivariant, and translation-invariant 3D networks. During inference, our method takes an unseen MI or partial 3D point cloud at an arbitrary pose and outputs an equivariant canonical pose. During training, this network uses self-supervision losses to learn the canonical pose from an un-canonicalized collection of full and partial 3D point clouds. ConDor can also learn to consistently co-segment object parts without any supervision. Extensive quantitative results on four new metrics show that our approach outperforms existing methods while enabling new applications such as operation on depth images and annotation transfer.
Publisher
IEEE COMPUTER SOC
Issue Date
2022-06
Language
English
Citation

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.16948 - 16958

ISSN
1063-6919
DOI
10.1109/CVPR52688.2022.01646
URI
http://hdl.handle.net/10203/305863
Appears in Collection
RIMS Conference Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0