Accelerating gradient descent and Adam via fractional gradients

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 131
  • Download : 0
We propose a class of novel fractional-order optimization algorithms. We define a fractional-order gradient via the Caputo fractional derivatives that generalizes integer-order gradient. We refer it to as the Caputo fractional-based gradient, and develop an efficient implementation to compute it. A general class of fractional-order optimization methods is then obtained by replacing integer-order gradients with the Caputo fractional-based gradients. To give concrete algorithms, we consider gradient descent (GD) and Adam, and extend them to the Caputo fractional GD (CfGD) and the Caputo fractional Adam (CfAdam). We demonstrate the superiority of CfGD and CfAdam on several large scale optimization problems that arise from scientific machine learning applications, such as ill-conditioned least squares problem on real-world data and the training of neural networks involving non-convex objective functions. Numerical examples show that both CfGD and CfAdam result in acceleration over GD and Adam, respectively. We also derive error bounds of CfGD for quadratic functions, which further indicate that CfGD could mitigate the dependence on the condition number in the rate of convergence and results in significant acceleration over GD.(c) 2023 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2023-04
Language
English
Article Type
Article
Citation

NEURAL NETWORKS, v.161, pp.185 - 201

ISSN
0893-6080
DOI
10.1016/j.neunet.2023.01.002
URI
http://hdl.handle.net/10203/305806
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0