Conformational landscapes of artificial peptides predicted by various force fields: are we ready to simulate beta-amino acids?

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 114
  • Download : 0
With the introduction of artificial peptides as antimicrobial agents and organic catalysts, numerous efforts have been made to design foldamers with desirable structures and functions. Computational tools are a helpful proxy for revealing the dynamic structures at atomic resolution and understanding foldamer's complex structure-function relationships. However, the performance of conventional force fields in predicting the structures of artificial peptides has not been systematically evaluated. In this study, we critically assessed three popular force fields, AMBER ff14SB, CHARMM36m, and OPLS-AA/L, in predicting conformational propensities of a beta-peptide foldamer at monomer and hexamer levels. Simulation results were compared to those obtained from quantum chemistry calculations and experimental data. We also utilised replica exchange molecular dynamics simulations to investigate the energy landscape of each force field and assess the similarities and differences between force fields. We compared different solvent systems in the AMBER ff14SB and CHARMM36m frameworks and confirmed the unanimous role of hydrogen bonds in shaping energy landscapes. We anticipate that our data will pave the way for further improvements to force fields and for understanding the role of solvents in peptide folding, crystallisation, and engineering.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2023-03
Language
English
Article Type
Article
Citation

PHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.25, no.10, pp.7466 - 7476

ISSN
1463-9076
DOI
10.1039/d2cp05998c
URI
http://hdl.handle.net/10203/305718
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0