Colloidal Quantum Dot:Organic Ternary Ink for Efficient Solution-Processed Hybrid Solar Cells

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 96
  • Download : 0
The fabrication of heterostructures via solution process is one of the essential technologies for realizing efficient advanced-generation optoelectronics. Hybrid structures comprising colloidal quantum dots (CQD) and organic semiconducting molecules are garnering considerable research interest because of their complementing optical and electrical properties. However, blending both the materials and forming a stable electronic ink are a challenge owing to the solubility mismatch. Herein, a CQD:organic ternary-blended hybrid solar ink is devised, and efficient hybrid solar cells are demonstrated via single-step spin coating under ambient conditions. Specifically, the passivation of the benzoic acid ligand on the CQD surface enables the dissolution in low-polar solvent such as chlorobenzene, which yields a stable CQD:organic hybrid ink. The hybrid ink facilitates the formation of favorable thin-film morphologies and, consequently, improves the charge extraction efficiency of the solar cells. The resulting hybrid solar cells exhibit a power conversion efficiency of 15.24% that is the highest performance among all existing air-processed CQD:organic hybrid solar cells.
Publisher
WILEY-HINDAWI
Issue Date
2023-02
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, v.2023

ISSN
0363-907X
DOI
10.1155/2023/4911750
URI
http://hdl.handle.net/10203/305685
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0