Evaluation of optimal plume spacing and destratification efficiency by combined effect of adjacent bubble plumes with 2-Phase(3D) hydrodynamic behavior analysis in a stratified fluid성층유체의 수리동역학적 2상 3차원 거동분석과 인접 플륨간 중첩영향을 고려한 최적 플륨간격 및 탈성층 효율평가

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 682
  • Download : 0
The use of air diffuser system to ameliorate the reservoir by breaking stratification is now widespread. More than about 370 air-blowing systems are being operated in 30 man-made reservoirs for drinking water supply in Korea. But, still there is lack of more specific design and operational guidelines such as spacing between adjacent plumes and optimal airflow rate, especially, due to more reliance on hydrodynamic analysis of stratified fluid behaviors and effectiveness of air blowing. Therefore, this study focuses on the hydrodynamic behavior of bubble plumes, which are the major mechanism of destratification and their effect on adjacent plumes and destratification efficiency. For these, a 2-phase (3-D) Computational Fluid Dynamics (CFD) technique was used as a new analytical method. Lab experiments were also carried out to verify the model in thermally stratified fresh water. It was then verified that the CFD model performs well for the cases with a plume number $(P_N)$ range of 30 to 600. Thermal stratification was created in experiments using a heating pipe, in which hot water, heated in a separate heating tank circulated continuously. The heating pipe was movable upward or downward and capable of making a temperature range from 45℃ to ambient($\approx 18^\circ C$), which is enough temperature range for real reservoirs. Linear stratification conditions were adopted in these lab experiments. Consequently, this model enables us to simulate more complicated stratification conditions with different density intensities and source strengths. From this, we can suggest the optimal diffuser spacing having optimal destratification efficiency by simply analyzing the complex destratification procedures varying with the seasonal stratification intensity and bubble flow rate. This study shows that the mixing efficiency strongly depends on the spacing of neighboring plumes. When diffuser spacing is less than 1.5 times the depth, the combined effect is stronger; as...
Advisors
Park, Hee-Kyungresearcher박희경researcher
Description
한국과학기술원 : 건설및환경공학과,
Publisher
한국과학기술원
Issue Date
2004
Identifier
237609/325007  / 020005830
Language
eng
Description

학위논문(박사) - 한국과학기술원 : 건설및환경공학과, 2004.2, [ vi, 79 p. ]

Keywords

PLUME NUMBER; DESTRATIFICATION; CFD; BUBBLE PLUME; COMBINED EFFECT; 중첩 효과; 플륨 넘버; 탈성층; 전산유체역학; 버블 플륨

URI
http://hdl.handle.net/10203/30557
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=237609&flag=dissertation
Appears in Collection
CE-Theses_Ph.D.(박사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0