Production of 1,2-propanediol from glycerol in Klebsiella pneumoniae GEM167 with flux enhancement of the oxidative pathway

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 105
  • Download : 0
BackgroundTo support the sustainability of biodiesel production, by-products, such as crude glycerol, should be converted into high-value chemical products. 1,2-propanediol (1,2-PDO) has been widely used as a building block in the chemical and pharmaceutical industries. Recently, the microbial bioconversion of lactic acid into 1,2-PDO is attracting attention to overcome limitations of previous biosynthetic pathways for production of 1,2-PDO. In this study, we examined the effect of genetic engineering, metabolic engineering, and control of bioprocess factors on the production of 1,2-PDO from lactic acid by K. pneumoniae GEM167 with flux enhancement of the oxidative pathway, using glycerol as carbon source.ResultsWe developed K. pneumoniae GEM167 Delta adhE/pBR-1,2PDO, a novel bacterial strain that has blockage of ethanol biosynthesis and biosynthesized 1,2-PDO from lactic acid when glycerol is carbon source. Increasing the agitation speed from 200 to 400 rpm not only increased 1,2-PDO production by 2.24-fold to 731.0 +/- 24.7 mg/L at 48 h but also increased the amount of a by-product, 2,3-butanediol. We attempted to inhibit 2,3-butanediol biosynthesis using the approaches of pH control and metabolic engineering. Control of pH at 7.0 successfully increased 1,2-PDO production (1016.5 +/- 37.3 mg/L at 48 h), but the metabolic engineering approach was not successful. The plasmid in this strain maintained 100% stability for 72 h.ConclusionsThis study is the first to report the biosynthesis of 1,2-PDO from lactic acid in K. pneumoniae when glycerol was carbon source. The 1,2-PDO production was enhanced by blocking the synthesis of 2,3-butanediol through pH control. Our results indicate that K. pneumoniae GEM167 has potential for the production of additional valuable chemical products from metabolites produced through oxidative pathways.
Publisher
BMC
Issue Date
2023-02
Language
English
Article Type
Article
Citation

BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, v.16, no.1

ISSN
2731-3654
DOI
10.1186/s13068-023-02269-4
URI
http://hdl.handle.net/10203/305462
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0