Liquid Crystal Polymer (LCP), an Attractive Substrate for Retinal Implant

Cited 37 time in webofscience Cited 0 time in scopus
  • Hit : 86
  • Download : 0
Recently, there has been growing interest in liquid crystal polymer (LCP) as a new biomaterial for next-generation implantable neural prosthetic devices. LCP has a very low moisture absorption rate compared with other polymers such as polyimide or parylene-C, providing a superior long-term reliability in the human body. In addition, LCP film is compatible with semiconductor processes, and layer-to-layer lamination is possible simply by fusion bonding of multiple LCP sheets with heat and pressure without the use of adhesives. A monolithic system can be implemented by using LCP as the substrate of electrodes and printed circuit boards as well as packaging material. Therefore, the LCP-based system can achieve a much higher long-term reliability, while maintaining the merits of conventional polymer-based systems such as thinness, flexibility, and simple fabrication procedure. In the present study, we have shown the feasibility of LCP as a substrate and packaging material for a novel monolithic retinal prosthetic device. The patterns of printed circuits and a planar coil were formed on LCP films by thin-film processes, and eye-surface-conformable structure was achieved that enables the attachment of the whole retinal implant on the eyeball. It has been verified that the spherical deformation process did not adversely affect the electrical characteristics or the performance of the printed circuits and the planar coil. The long-term reliability of LCP-encapsulation was evaluated by an in vitro accelerated soak test, and possible failure mechanisms were investigated. The LCP-encapsulation could provide reliable electrical insulation for similar to 400 days in 75 degrees C phosphate-buffered solution (PBS).
Publisher
MYU, SCIENTIFIC PUBLISHING DIVISION
Issue Date
2012
Language
English
Article Type
Article
Citation

SENSORS AND MATERIALS, v.24, no.4, pp.189 - 203

ISSN
0914-4935
URI
http://hdl.handle.net/10203/305370
Appears in Collection
BC-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 37 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0