Selective Activation of Cortical Columns Using Multichannel Magnetic Stimulation With a Bent Flat Microwire Array

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 64
  • Download : 0
Objective: Cortical neural prostheses that aim to restore useful vision, hearing, and tactile sensations require the ability to selectively target different cortical regions simultaneously. Electrical stimulation via intracortical electrodes has been used to create spatial patterns of cortical activation. However, their efficacy remains limited due to the inability of conventional electrodes to confine activation to specific cortical regions around each electrode. Magnetic stimulation from single bent wires can selectively activate pyramidal neurons while avoiding passing axons, thereby confining activation to small cortical regions. This paper presents a novel bent flat microwire array and demonstrates its effectiveness for selective activation of cortical columns in mouse brain slices. Methods: A computational model was developed to compare the spatial resolution of magnetic stimulation from bent wire arrays with 280 and 530 mu m tip spacings. The same array designs were fabricated for use in electrophysiological experiments, i.e., calcium imaging (GCaMP6s) of mouse brain slices. Results: All fabricated array designs reliably produced spatially discrete cortical activations at low stimulus amplitudes, but the 280-mu m-spacing produced strong interference (constructive or destructive) at high stimulus amplitudes, thereby resulting in single strong activations or two asymmetric activations. 4-channel bent wire arrays with spacing of 340 mu m avoided the interference and produced clearer spatial patterns of activation than electrodes. Conclusion: Bent wire array designs can influence the strength or the spatial resolution of multichannel magnetic stimulation. Significance: These results suggest that bent microwire arrays can enhance the selectivity of multichannel stimulation of brain and therefore may help to develop reliable and effective cortical neural prostheses.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2021-07
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, v.68, no.7, pp.2164 - 2175

ISSN
0018-9294
DOI
10.1109/TBME.2020.3033491
URI
http://hdl.handle.net/10203/305355
Appears in Collection
BC-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0