Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 298
  • Download : 0
Terephthalic acid (TPA) is an important commodity chemical used as a monomer of polyethylene terephthalate (PET). Since a large quantity of PET is routinely manufactured and consumed worldwide, the development of sustainable biomanufacturing processes for its monomers (i.e. TPA and ethylene glycol) has recently gained much attention. In a previous study, we reported the development of a metabolically engineered Escherichia coli strain producing 6.7 g/L of TPA from p-xylene (pX) with a productivity and molar conversion yield of 0.278 g/L/h and 96.7 mol%, respectively. Here, we report metabolic engineering of Pseudomonas putida KT2440, a microbial chassis particularly suitable for the synthesis of aromatic compounds, for improved biocatalytic conversion of pX to TPA. To develop a plasmid-free, antibiotic-free, and inducer-free biocatalytic process for cost-competitive TPA production, all heterologous genes required for the synthetic pX-to-TPA bioconversion pathway were integrated into the chromosome of P. putida KT2440 by RecET-based markerless recombineering and overexpressed under the control of constitutive promoters. Next, TPA production was enhanced by integrating multiple copies of the heterologous genes to the ribosomal RNA genes through iteration of recombineering-based random integration and subsequent screening of high-performance strains. Finally, fed-batch fermentation process was optimized to further improve the performance of the engineered P. putida strain. As a result, 38.25 ± 0.11 g/L of TPA was produced from pX with a molar conversion yield of 99.6 ± 0.6%, which is equivalent to conversion of 99.3 ± 0.8 g pX to 154.6 ± 0.5 g TPA. This superior pX-to-TPA biotransformation process based on the engineered P. putida strain will pave the way to the commercial biomanufacturing of TPA in an industrial scale.
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Issue Date
2023-03
Language
English
Article Type
Article
Citation

METABOLIC ENGINEERING, v.76, pp.75 - 86

ISSN
1096-7176
DOI
10.1016/j.ymben.2023.01.007
URI
http://hdl.handle.net/10203/304808
Appears in Collection
RIMS Journal PapersCBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0