Wireless, AI-enabled wearable thermal comfort sensor for energy-efficient, human-in-the-loop control of indoor temperature

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 150
  • Download : 0
The conventional heating, ventilation, and air conditioning (HVAC) systems are based on a set-point control approach that only considers the temperature of the environment without reflecting the thermophysiological status of the occupant. This approach not only fails to fully satisfy individual thermal preferences, but it also makes an HVAC operation energy-inefficient. One possible solution is to control the indoor thermal condition based on an accurate prediction of the occupant's thermal comfort to prevent any unnecessary energy consumption. Here, we present an artificial intelligence (AI) wearable sensor-based human-in-the-loop HVAC control system that is operated on a real-time basis reflecting the thermophysiological condition of the occupant to automatically improve their thermal comfort while reducing the energy consumption of the building. The wristband-type, AI-based, three-point wearable temperature sensor offers excellent thermal comfort prediction accuracy (93.9%), enabling a human-centric HVAC control operation. A proof-of-concept demonstration of closed human-in-the-loop HVAC control using the AI-enabled wearable sensor system confirms both the accuracy of the thermal comfort prediction and the energy-efficiency of this approach, demonstrating its potential as a new solution that improves the occupant's thermal comfort and provides building energy savings.
Publisher
ELSEVIER ADVANCED TECHNOLOGY
Issue Date
2023-03
Language
English
Article Type
Article
Citation

BIOSENSORS & BIOELECTRONICS, v.223

ISSN
0956-5663
DOI
10.1016/j.bios.2022.115018
URI
http://hdl.handle.net/10203/304788
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0