Evolution of vacuum ultraviolet emission in dual-frequency capacitively coupled plasmas

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 212
  • Download : 0
In plasma material processing, vacuum ultraviolet (VUV) emission is released from gas discharges, leading to undesirable results. Energetic VUV photons enable the creation of an electron-hole pair current when their energy is larger than the bandgap energy of the plasma-facing top layer during plasma material processing. For example, the high energy of VUV photons from helium (21.2 eV), argon (11.6 eV), and oxygen (13.6 eV) is sufficient to generate induced currents in SiO2 thin films. These feedstock gases are widely used in many procedures utilizing low-temperature industrial plasmas. Thus, the VUV emission evolution with both the power ratio between high (60 MHz) and low (2 MHz) frequencies and pulse duty ratio of the low-frequency radio frequency (rf) power in a dual-frequency capacitively coupled plasma, which is indispensable in modern plasma etching processes, was investigated. Both the power ratio between high and low frequencies and the pulse duty ratio changed the electron temperature, leading to evolution of the VUV emission intensity.
Publisher
ELSEVIER
Issue Date
2021-11
Language
English
Article Type
Article
Citation

CURRENT APPLIED PHYSICS, v.31, pp.239 - 245

ISSN
1567-1739
DOI
10.1016/j.cap.2021.08.003
URI
http://hdl.handle.net/10203/303884
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0