Role of Surface Strain at Nanocrystalline Pt{110} Facets in Oxygen Reduction Catalysis

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 158
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorAhn, Hojinko
dc.contributor.authorAhn, Hochanko
dc.contributor.authorAn, Jihunko
dc.contributor.authorKim, Hyungjunko
dc.contributor.authorHong, Jong Wookko
dc.contributor.authorHan, Sang Wooko
dc.date.accessioned2022-12-08T01:00:47Z-
dc.date.available2022-12-08T01:00:47Z-
dc.date.created2022-11-28-
dc.date.created2022-11-28-
dc.date.issued2022-11-
dc.identifier.citationNANO LETTERS, v.22, no.22, pp.9115 - 9121-
dc.identifier.issn1530-6984-
dc.identifier.urihttp://hdl.handle.net/10203/302043-
dc.description.abstractWe have developed a synthesis method of rhombic dodecahedral Pd@Pt core-shell nanocrystals bound exclusively by {110} facets with controlled numbers of Pt atomic layers to study the surface strain-catalytic activity relationship of Pt{110} facets. Through control over growth kinetics, the epitaxial and conformal overgrowth of Pt shells on the {110} facets of rhombic dodecahedral Pd nanocrystals could be achieved. Notably, the electrocatalytic activity of the Pd@Pt nanocrystals toward oxygen reduction reaction decreased as their Pt shells became thinner and thus more in-plane compressive surface strain was applied, which is in sharp contrast to previous reports on Pt-based catalysts. Density functional theory calculations revealed that the characteristic strain-activity relationship of Pt{110} facets is the result of the counteraction of out-of-plane surface strain against the applied in plane surface strain, which can effectively impose a tensile environment on the surface atoms of the Pd@Pt nanocrystals under the compressive in-plane strain.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleRole of Surface Strain at Nanocrystalline Pt{110} Facets in Oxygen Reduction Catalysis-
dc.typeArticle-
dc.identifier.wosid000884849900001-
dc.identifier.scopusid2-s2.0-85141999660-
dc.type.rimsART-
dc.citation.volume22-
dc.citation.issue22-
dc.citation.beginningpage9115-
dc.citation.endingpage9121-
dc.citation.publicationnameNANO LETTERS-
dc.identifier.doi10.1021/acs.nanolett.2c03611-
dc.contributor.localauthorKim, Hyungjun-
dc.contributor.localauthorHan, Sang Woo-
dc.contributor.nonIdAuthorHong, Jong Wook-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorplatinum-
dc.subject.keywordAuthorpalladium-
dc.subject.keywordAuthorcore-shell nanocrystals-
dc.subject.keywordAuthorsurface strain-
dc.subject.keywordAuthorORR-
dc.subject.keywordPlusSINGLE-CRYSTAL SURFACES-
dc.subject.keywordPlusBY-LAYER DEPOSITION-
dc.subject.keywordPlusENHANCED ACTIVITY-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusPD-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusLATTICE-
dc.subject.keywordPlusELECTROCATALYSIS-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusOCTAHEDRA-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0