Maximizing the overlap of two planar convex sets under rigid motions

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 1005
  • Download : 680
DC FieldValueLanguage
dc.contributor.authorAhn, Hee-Kapko
dc.contributor.authorCheong, Otfriedko
dc.contributor.authorPark, Chong-Daeko
dc.contributor.authorShin, Chan-Suko
dc.contributor.authorVigneron, Antoineko
dc.date.accessioned2007-05-23T09:11:40Z-
dc.date.available2007-05-23T09:11:40Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2007-05-
dc.identifier.citationCOMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, v.37, no.1, pp.3 - 15-
dc.identifier.issn0925-7721-
dc.identifier.urihttp://hdl.handle.net/10203/301-
dc.description.abstractGiven two compact convex sets P and Q in the plane, we compute an image of P under a rigid motion that approximately maximizes the overlap with Q. More precisely, for any epsilon > 0, we compute a rigid motion such that the area of overlap is at least 1-epsilon times the maximum possible overlap. Our algorithm uses O(1/epsilon) extreme point and line intersection queries on P and Q, plus O((1/epsilon(2)) log(1/epsilon)) running time. If only translations are allowed, the extra running time reduces to O((1/epsilon) log(1/epsilon)). If P and Q are convex polygons with n vertices in total that are given in an array or balanced tree, the total running time is O((1/epsilon) log n + (1/epsilon(2)) log(1/epsilon)) for rigid motions and O((1/epsilon) log n + (1/epsilon) log(1/epsilon)) for translations. (c) 2006 Elsevier B.V. All rights reserved.-
dc.description.sponsorshipBrain Korea 21 Project, The School of Information Technology, KAIST, in 2005. Hankuk University of Foreign Studies Research Fund of 2005. National University of Singapore under grant R-252-000-166-112.en
dc.languageEnglish-
dc.language.isoenen
dc.publisherELSEVIER SCIENCE BV-
dc.subjectPOLYGONS-
dc.subjectAPPROXIMATION-
dc.subjectAREA-
dc.titleMaximizing the overlap of two planar convex sets under rigid motions-
dc.typeArticle-
dc.identifier.wosid000245339400002-
dc.identifier.scopusid2-s2.0-33847121346-
dc.type.rimsART-
dc.citation.volume37-
dc.citation.issue1-
dc.citation.beginningpage3-
dc.citation.endingpage15-
dc.citation.publicationnameCOMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS-
dc.identifier.doi10.1016/j.comgeo.2006.01.005-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorCheong, Otfried-
dc.contributor.nonIdAuthorAhn, Hee-Kap-
dc.contributor.nonIdAuthorPark, Chong-Dae-
dc.contributor.nonIdAuthorShin, Chan-Su-
dc.contributor.nonIdAuthorVigneron, Antoine-
dc.type.journalArticleArticle; Proceedings Paper-
dc.subject.keywordAuthorapproximation algorithm-
dc.subject.keywordAuthorsublinear algorithm-
dc.subject.keywordAuthorconvex shape-
dc.subject.keywordAuthorgeometric pattern matching-
dc.subject.keywordPlusPOLYGONS-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusAREA-
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0