Detector Array Readout with Traveling Wave Amplifiers

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 69
  • Download : 0
Reducing noise to the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures, such as the neutrino mass measurement, the next-generation X-ray observatory, the CMB measurement, the dark matter and axion detection, and the rapid high-fidelity readout of superconducting qubits. The read out sensitivity of arrays of microcalorimeter detectors, resonant axion-detectors, and qubits, is currently limited by the noise temperature and bandwidth of the cryogenic amplifiers. The Detector Array Readout with Traveling Wave Amplifiers project has the goal of developing high-performing innovative traveling wave parametric amplifiers with a high gain, a high saturation power, and a quantum-limited or nearly quantum-limited noise. The practical development follows two different promising approaches, one based on the Josephson junctions and the other one based on the kinetic inductance of a high-resistivity superconductor. In this contribution, we present the aims of the project, the adopted design solutions and preliminary results from simulations and measurements.
Publisher
SPRINGER/PLENUM PUBLISHERS
Issue Date
2022-11
Language
English
Article Type
Article
Citation

JOURNAL OF LOW TEMPERATURE PHYSICS, v.209, no.3-4, pp.658 - 666

ISSN
0022-2291
DOI
10.1007/s10909-022-02809-6
URI
http://hdl.handle.net/10203/301323
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0