Data-free Universal Adversarial Perturbation and Black-box Attack

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 69
  • Download : 0
Universal adversarial perturbation (UAP), i.e. a single perturbation to fool the network for most images, is widely recognized as a more practical attack because the UAP can be generated beforehand and applied directly during the attack stage. One intriguing phenomenon regarding untargeted UAP is that most images are misclassified to a dominant label. This phenomenon has been reported in previous works while lacking a justified explanation, for which our work attempts to provide an alternative explanation. For a more practical universal attack, our investigation of untargeted UAP focuses on alleviating the dependence on the original training samples, from removing the need for sample labels to limiting the sample size. Towards strictly data-free untargeted UAP, our work proposes to exploit artificial Jigsaw images as the training samples, demonstrating competitive performance. We further investigate the possibility of exploiting the UAP for a data-free black-box attack which is arguably the most practical yet challenging threat model. We demonstrate that there exists optimization-free repetitive patterns which can successfully attack deep models. Code is available at https://bit.ly/3y0ZTIC.
Publisher
IEEE Computer Society
Issue Date
2021-10-17
Language
English
Citation

18th IEEE/CVF International Conference on Computer Vision, ICCV 2021, pp.7848 - 7857

DOI
10.1109/iccv48922.2021.00777
URI
http://hdl.handle.net/10203/301201
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0