Coupled system model analysis for a small modular reactor cogeneration (combined heat and power) application

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 23
  • Download : 0
The goal of this research is to develop a flexible, simple, and accurate coupled system model for nuclear combined heat and power cycle (CHP) to investigate various heat-source applications of a small modular reactor (SMR) based on off-design component models. A CHP heat exchanger system model was developed and coupled with the SMR secondary system model for a typical SMR-CHP analysis. The coupled system can be used as (1) a supporting tool for preliminary design by making it possible to calculate the required overall heat transfer capabilities of each CHP heat exchanger, and (2) a supporting tool for optimizing a nuclear CHP application with different heat extraction locations. Analysis of the proposed SMR application with respect to economic feasibility indicated that when market fossil-fuel prices are low (e.g., 2020), a typical nuclear CHP application may not be economically feasible without stronger carbon pricing. However, when the market fossil-fuel prices are high (e.g., 2022), a nuclear CHP application could be economically feasible without taking carbon pricing into consideration. For a future work, more comprehensive techno-economic analysis can be performed for specific regions, since factors such as carbon pricing, electrical prices, and required CHP heat may differ by country or a region within a country.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2023-01
Language
English
Citation

ENERGY, v.262

ISSN
0360-5442
DOI
10.1016/j.energy.2022.125481
URI
http://hdl.handle.net/10203/299188
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0