Refining the surface properties of WO2.7 by vacancy engineering and transition metals doping for enhanced alkaline hydrogen evolution reaction

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 531
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHuang, Huaweiko
dc.contributor.authorXu, Liangliangko
dc.contributor.authorWoo, Dong Yoonko
dc.contributor.authorKim, Seongbeenko
dc.contributor.authorKim, Sung Minko
dc.contributor.authorKim, Yong Kyeongko
dc.contributor.authorByeon, Jaehoko
dc.contributor.authorLee, Jinwooko
dc.date.accessioned2022-10-17T08:00:14Z-
dc.date.available2022-10-17T08:00:14Z-
dc.date.created2022-10-17-
dc.date.issued2023-01-
dc.identifier.citationCHEMICAL ENGINEERING JOURNAL, v.451-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/10203/298977-
dc.description.abstractAnion-exchange membrane water electrolyzer is a promising and green technology for hydrogen production. However, the high energy barriers for the water dissociation step for breaking the strong H-O-H covalent bond results in sluggish hydrogen evolution reaction (HER) kinetics at the cathode. Herein, we present a strategy to optimize the morphology and surface properties of WO2.7 by introducing oxygen vacancies and doping with various transition metals. The experimental analysis demonstrates that the developed Co-WO2.7-x and Ni-WO2.7-x with ultrafine nanorods structure provide a larger electrochemical surface area than the other synthesized catalysts. Furthermore, theoretical analysis reveals that Co-WO2.7-x has the lowest energy barrier (0.65 eV) for the water dissociation step, which is much lower than that of WO2.7 (2.61 eV). Consequently, the Co-WO2.7-x delivers a current of 10 mA cm(-2) at a small overpotential of 59 mV for alkaline HER.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleRefining the surface properties of WO2.7 by vacancy engineering and transition metals doping for enhanced alkaline hydrogen evolution reaction-
dc.typeArticle-
dc.identifier.wosid000862926900002-
dc.identifier.scopusid2-s2.0-85137291043-
dc.type.rimsART-
dc.citation.volume451-
dc.citation.publicationnameCHEMICAL ENGINEERING JOURNAL-
dc.identifier.doi10.1016/j.cej.2022.138939-
dc.contributor.localauthorLee, Jinwoo-
dc.contributor.nonIdAuthorXu, Liangliang-
dc.contributor.nonIdAuthorKim, Sung Min-
dc.contributor.nonIdAuthorKim, Yong Kyeong-
dc.contributor.nonIdAuthorByeon, Jaeho-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorTungsten oxide-
dc.subject.keywordAuthorTransition metal-
dc.subject.keywordAuthorDoping-
dc.subject.keywordAuthorAlkaline hydrogen evolution-
dc.subject.keywordPlusW18O49 NANOSTRUCTURES-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusNI-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0