CO2-derived free-standing carbon interlayer embedded with molecular catalysts for improving redox performance in Li-S batteries

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 580
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYang, Jeongwooko
dc.contributor.authorKang, Dong Wooko
dc.contributor.authorKim, Hodongko
dc.contributor.authorHwang, Byunghoonko
dc.contributor.authorLee, Jae W.ko
dc.date.accessioned2022-09-27T03:00:13Z-
dc.date.available2022-09-27T03:00:13Z-
dc.date.created2022-09-27-
dc.date.issued2023-01-
dc.identifier.citationCHEMICAL ENGINEERING JOURNAL, v.451, no.3-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/10203/298702-
dc.description.abstractThe use of a free-standing carbon interlayer is a promising approach for the development of lithium-sulfur (Li-S) batteries because it suppresses the shuttle phenomenon and provides outstanding flexible characteristics. However, the thickness required to maintain the unique properties of the free-standing interlayer inevitably inhibits the transport of Li ions, causing sluggish redox kinetics. This work tackles the critical problem of the interlayer by synthesizing a composite in which Fe-based molecular catalysts are atomically incorporated into carbon nanofibers with superior pore characteristics realized by CO2 treatment. The templates self-generated during CO2 annealing provide high porosity and surface area, leading to effective Li-ion diffusion, and homo-geneous distribution of the catalytic sites in the form of Fe-N-2 to the free-standing paper. The Fe-N-2 configuration thermodynamically aids in overcoming the energy barrier of the rate-limiting step of Li2S4 to Li2S conversion while minimizing the shuttle phenomenon. Based on the effective Li-ion transport by improved pore properties, and the superior redox reaction ability of Fe-N-2, the assembled cell maintains a coulombic efficiency of 95% up to 1600 cycles at 3.0 C. In addition, a maximum areal capacity of 2.9 mAh cm(-2) is delivered for a high loading electrode with 4.2 mg cm(-2) at 45 degrees C.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleCO2-derived free-standing carbon interlayer embedded with molecular catalysts for improving redox performance in Li-S batteries-
dc.typeArticle-
dc.identifier.wosid000853690300004-
dc.identifier.scopusid2-s2.0-85137285988-
dc.type.rimsART-
dc.citation.volume451-
dc.citation.issue3-
dc.citation.publicationnameCHEMICAL ENGINEERING JOURNAL-
dc.identifier.doi10.1016/j.cej.2022.138909-
dc.contributor.localauthorLee, Jae W.-
dc.contributor.nonIdAuthorHwang, Byunghoon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCO2 utilization-
dc.subject.keywordAuthorLi-S batteries-
dc.subject.keywordAuthorFree-standing carbon interlayer-
dc.subject.keywordAuthorFe-N-2 active sites-
dc.subject.keywordAuthorDFT calculations-
dc.subject.keywordPlusHIERARCHICAL POROUS CARBON-
dc.subject.keywordPlusLITHIUM-SULFUR BATTERIES-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusPOLYSULFIDES-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusSURFACE-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0